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Abstract

It has been proven that the generalized Lotka-Volterra equations can express arbitrary continuous fimctions if there are

sufficient hidden nodes that are not assigned by observational data. We show that the generalized Lotka-Volterra

equations encompass a description of the same structure as do artificial neural networks. Since the equations can be used

as a universal modeling framework, we named the computational models of the equations Lotka-Voltena Machines

(LVMS). We developed a software tool (Java applet) to construct LVMS and identified unknown parameters in the LVM

using a genetic algorithm. It is demonstrated that the LVM can model the growth of organs in a plant and the tool can

identify the parameters of the LVM although it may have more than 20 unknown parameters, and that the resulting LVM

can correctly forecast the dynamics of organs. Originally the Lotka-Volterra equation was proposed to model ecosystems.

We show that the LVM can be transformed into the equations for a hypercycle, a model of chemical processes essential to

life. Therefore the LVM has the ability to represent the dynamics at almost all levels of hierarchical structure in complex

biological systems. We developed a large LVM simulator (Java applet) to simulate a much larger LVM. Large LVMS on

the order of hundreds of nodes show a different character from that of small LVMS. Specific aspects of the character of

huge LVMS are discussed from examples of simulations. We propose a self-organizing mechanism according to which a

sufllcient number of nodes, interconnected by diverse weights in a huge LVM, can maintain their order against

fluctuations coming from all other nodes.

1. Introduction

To model physical phenomena, there exist fundamental

equations like the Navier-Stokes equation, Maxwell’s

equations, the Schrodinger equation and so on.

Theoretically any physical system can be simulated only

by solving such equations. On the other hand simple

equations of this sort are not available for biological

systems. Artificial neural networks (ANNs) however

might be able to provide a framework for such general

equations, since some ANNs are able to approximate

arbitrary functions in order to represent patterns in

complex phenomena. The next phase of research could

thus evolve toward algorithms for learning and

technologies for neuro-chips.

Similarly, it is most important that general models of

complex biological systems, like those governing the

dynamics of ecosystems and the growth of individuals,

should be able to approximate arbitrary functions.

General models that encompass the functioning of neural

networks are desirable.

Statistical models have in fact been employed as simple

models of biological systems. However statistical

modeling is too general as a tool to probe the functioning

of complex biological systems. We therefore propose

generalized Lotka-Volterra equations as a modeling

method more universal and realistic than either neural

networks or statistical methods. This method can

approximate arbitrary positive continuous functions, and
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the models comprise the characters of both ecosystems

and artificial neural networks. Moreover it has the

advantage that hardware implementation (analog circuit)

is readily designed. We dubbed it the Lotka-Volterra

Machine (LVM). We applied the LVM to the construction

of plant growth models and a model of general complex

biological systems.

2. LVM: Lotka-Volterra Machine

2.1 Generalized LVM

The generalized Lotka-Volterra equation is

where g, is abundance such as population or biomes

present, pij is an interference coefllcient between node i

and nodej, r, is the intrinsic reproductive rate and n is the

number of nodes. Although this equation is nonlinear, it

has remarkable advantages that derive from its simplicity

and symmetry as well as its universality with respect to

software/hardware implementation, a feature that will be

demonstrated later.

Eq. (1) subsumes the Lotka-Volterra equation for the

population dynamics of two individualslJ , given by

[

dgl— = gl(rl - Wzgz)
dt

42
— = g2(?-2
dt

- w21gl )

Assume that the parameters in Eq. (2) are

{

rl = w, r2 = -w

W’12 = w, Wzl = -w

(2)

(3)

and that g,gz is small. Then we can derive the approximate

solutions,

{

g, =I+acos(wt+p)

g, =I+asin(wt +fl)
(4)

where a and ~ are constants.

If the LVM has n coupled nodes whose parameters, w,

are w,2m, . ...nm. the LVM synthesizes 2 n

weighted cyclic signals from the outputs of the nodes.

This synthesis in the LVM has the same character as a

Fourier series (Fig. 1). This means that the LVM can

express arbitrary continuous functions if there is a

sufllcient number of hidden nodes unassigned by the

observational data (observational data fixes the

input/output nodes). If we can identify the unknown

parameters in an LVM comprising several hidden nodes

with the observed data of a given complex system, the

LVM will constitute a quantitative model of that complex

system.

al cos(wt) + aZ cos(2wt) + . . . + an cos(nwt)+
bl sin(d) + b2 sin(2wt) + . ..+ bn sin(nd)

\

—w – 2W —nw

Fig. 1 LVM with oscillating coupled nodes

2.2 Simplified LVNf

A simplified LVM encompasses the operation of artificial

neural networks like the multi-layered perception (e.g.

back-propagation mode12)) or the interconnected

network. (e.g. Hopfield mode13J).

It has been proven4) that there exists a Lyapunov function

and a global equilibrium point for Eq. (1) under

{

pii >0
pii > pti (i* j)

We assume the additional and stronger restriction,

pii >> /lti (i#j)
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and rewrite Eq. (1) as simplified LVM is limited by the restrictions, Eq. (5), (6).

I
dg
~=gi(C-zi-Piigi)

Zi =

?

Pijgj

] ●1)

(7)

Assuming that Zi is approximately constant over short

times, the integrated solution of Eq. (7) is

1
1

‘i = l+exp(-~it+di
(8)

[pi= ri -2,

where di is an integration constant. Unknown parameters

can be estimated by recurrent neural network learning

algorithmss’b) (t must be constant) or, with empirical data,

a special algorithm’) adapted to the simplified LVM (t

may be variable). We developed a soybean growth model

using this simplified LVM in which the estimated pti

were correlated with nutrient flow within the plant body8).

Both the simplified and the generalized LVM can model

neural networks, however the scope of application for the
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2.3 Identification algorithms for generalized LVM

We employed a genetic algorithm (GA) as a means to

estimate the unknown parameters in a generalized LVM.

The evaluation function was the distance between

estimated values and the observed data. A LVM

consisting of n nodes has n 2 + n unknown parameters. If

we employ 1bits to represent a parameter, the gene size of

the LVM is 1(?z2 + n), however some parameters can be

eliminated by a priori restrictions (knowledge).

Since there are so many options, a GUI tool to identify the

parameters of a LVM is indispensable. We developed a

program (Java applet) for this purpose and can construct a

LVM using this tool by interactively choosing options

(coding methods: binary code / Gray code, bit size for

coding, mutation rate, crossover, data set and so on).

2.4 Applications of a generalized LVM

Plant growth depends on the weather, soil, varieties and so
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Fig. 2 A comparison of the actual (dotted lines) organ dynamics of sweet potatoes observed in 1982 with the

predictions (solid lines) of the model using weather data from the same year. Parameters of the model were estimated

using meteorological and observed dry weight data from the period between 1970 and 1980.
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on. Farmers and consultants need models specific to their

situations and each model must be revised year by year

according to new observational data. We constructed 13

types of plant growth models (soybean:6, wheat:4, sweet

potato:3) using the LVM construction tool. The

predictions of these models are consistent with observed

data as shown in Fig. 2.

The plant growth model has m nodes for organs and e

nodes for environmental factors (Fig. 3). Environmental

nodes are assigned to observed weather data so there need

be no connection weights from the organ nodes to

environment nodes. The plant growth model contains

m 2 + m + e unknown parameters in total. Specifically

for the sweet potato model shown in Fig. 3, m was 4 (leaf,

stem, root, tuber), e was 2 (temperature, solar radiation)

and 1 was 8 bits. In total, 178 bits were identified in the

model.

Organs Pm,

gl

’11

xl X2 x
e

ErwtronmentalFactors

Fig. 3 A plant growth model using the LVM. Organs grow

competitively under restrictions imposed on resources

such as nutrients, water and space.

3. General model of complex biological systems

The Lotka-Volterra equations were originally conceived

as a model for ecosystems and individual organisms such

as bacteria and cells. They can also be applied to model

organs as has been shown.

One of the fundamental features of complex biological

systems is a chemical process, discussed

known as a hypercycle A hypercycle

autocatalytic reproduction, represented by

dyi
_ = ki Yi Yi_l
dt

(i= 1,2,.. O)

by Eigerf’),

evolves by

(9)

where yi is the concentration of polynucleotides and ki

is constant. This equation can be interpreted as a special

form of Eq. (l), when

(ri=O

t

~ij ‘ki (j=i-1) (lo)

pij=O(j#i-l)

After all, we can construct models for the dynamics of

phenomena from chemical processes to ecosystems, and

we can combine them into an all-encompassing model in

the framework of the LVM. From the standpoint of

system dynamics modeling, the LVM constitutes a

general model for complex biological systems (Fig. 4).

For really general models, we should in fact take into

account phenomena occurring at the next smallest scale,

that is, at the level of giant molecular systems. At this

scale we cannot ignore quantum mechanical effects.

Although this is an important issue, we will not touch on it

here since the LVM cannot naturally represent the

Schrodinger equation. We have investigated such

quantum-macroscopic complex systems in the context of

a simplified two-layer modellOJ.

Even restricted to the domain of classical mechanics, the

generalized model may exhibit interesting phenomena

such as self-organization. The model is heterogeneous

and the ranges of its parameters extremely broad.

Traditionally, complex systems have been modeled by

stochastic dynamics or chaotic systems. In such modeling,

assumptions about the random nature of node dynamics or

restrictions to a small number of degrees of freedom often

apply. The LVM for the general model requires an

enormously large number of degrees of freedom, and the
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structure (network of connections) must be extremely

heterogeneous, since real biological systems form a

hierarchy which occasionally makes connections between

structures at different scales. Are there any specific

characters that might be recognized in the heterogeneous

structure of vast complex systems? In order to utilize the

universal nature of the LVM towards practicaI

applications, we need to investigate the character of such

systems.

We have developed a huge LVM simulator as a Java

applet to investigate these problems. The only function of

this LVM simulator is to simulate Eq. (l). We identified

several interesting aspects of the character of this large

LVM (Fig. 5). Case (c)in Fig.3 indicates that uniform (or

fully random) weak connections offset interference from

(a) n=3

(b)n=10

(C) n=300

connected nodes in large compIex systems, and if several

nodes have diverse interconnections amongst themselves

and uniform connections with all other nodes, the nodes
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Fig4. A general model of complex biological

systems

Fig. 5 Typical complex output patterns for three types of LVM. n is the number of nodes in the LVM. The 300-node LVM

shown in (c) has three special nodes which have diverse interconnections amongst themselves and uniform (negative)

connections with all other nodes. The three nodes are frequently able to maintain their trajectories (stable states) under

fluctuations.
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can maintain a stable trajectory against fluctuations. This

ordering mechanism would be more conspicuous in

larger LVMS. When fluctuations are sut%ciently weak, the

response to fluctuations changes to an enhancement of

transitions in nonlinear systems, a phenomenon known as

stochastic resonance. Therefore we think that there exists

a critical size of the LVM at which the hidden order with

respect to fluctuation effects will become evident. This

ordering mechanism may account for the relevance of

simple legacy models for complex biological systems.

For example, legacy yield prediction models and growth

models are too simple nowadays. However if these

models caught the order of complex systems, their

predictions can be more accurate than our expecting

accuracy.

4. Discussion -Toward implementation of a huge LVM

The LVM simulator that we have developed can construct

thousands of node models. The limit depends on RAM

capacity and the CPU’s execution speed. By the above

discussions, we predict that much larger LVMS with

diverse connections will show interesting behaviors. If we

try to combine, in the framework of the LVM, quantitative

biological models of hierarchically arranged phenomena

across levels such as the ecosystem, individuals, organs,

cells and self-catalytic reproduction, we will need much

larger LVMS. Ideally we want to construct a LVM with

billions of nodes to realistically model complex biological

systems.

We can propose two ways to construct a billion-node

LVM. The first strategy is meta-computing and utilizes

the power of PCs connected to the intemet by delivering

partial threads (tasks) of the LVM simulator. This is the

reason we developed the LVM simulator as a Java applet.

The second way is a hardware implementation using

analog circuits. Fortunately Eq. (1) can be implemented as

an analog circuit using only standard analog devices:

analog multipliers, amplifiers and low-pass filters.

However the number of interconnecting wires in the

circuit increases as 0(n2). If we tried to develop a

hardware implementation of the LVM with 109 nodes, it

would need 1018connections. This wiring problem can be

solved by multiple frequency coding.

We are attempting both strategies to realize a huge LVM.
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